30 mars 2016

Comment nos connaissances nous sont utiles ? (Daniel T. Willingham) : traduction

source de l'article : American Educator, Spring 2006.

Chaque paragraphe en américain est suivi d'une proposition de traduction en français. 


How Knowledge Helps
It Speeds and Strengthens Reading Comprehension, Learning—and Thinking
By Daniel T. Willingham
"Knowledge is Good." So read the motto of the mythical Faber College in the 1978 movie, Animal House. Those of us who work in education would agree, even if we were unable to express ourselves so eloquently. But why, exactly, is knowledge good? When I've discussed this question with teachers, many have used the metaphor "It's grist for the mill." That is, the goal of education is seen not so much as the accumulation of knowledge, but as the honing of cognitive skills such as thinking critically. Knowledge comes into play mainly because if we want our students to learn how to think critically, they must have something to think about.

Quels services rend la connaissance ?
Elle accélère et renforce la compréhension en lecture, l’apprentissage et la pensée
Par Daniel T. Willingham
« La connaissance est bonne », telle est la devise écrite au fronton du mythique Faber College dans le film de 1978, Animal House. Ceux d’entre nous qui travaillent dans l’éducation seraient d’accord, même si nous serions incapables de nous exprimer si éloquemment. Pourquoi, pourquoi, exactement, la connaissance est-elle bonne ? Quand j’ai discuté de cette question avec des enseignants, beaucoup ont utilisé la métaphore « C’est du grain à moudre ». C’est-à-dire que le but de l’éducation est vu non pas tant comme l’accumulation de connaissances, mais comme le perfectionnement des habiletés cognitives telles que le fait de penser avec un esprit critique. Si la connaissance joue un rôle là-dedans, c’est principalement parce que si nous voulons que nos étudiants apprennent à penser de manière critique, ils doivent avoir quelque chose sur quoi exercer leur pensée.

It's true that knowledge gives students something to think about, but a reading of the research literature from cognitive science shows that knowledge does much more than just help students hone their thinking skills: It actually makes learning easier. Knowledge is not only cumulative, it grows exponentially. Those with a rich base of factual knowledge find it easier to learn more—the rich get richer. In addition, factual knowledge enhances cognitive processes like problem solving and reasoning. The richer the knowledge base, the more smoothly and effectively these cognitive processes—the very ones that teachers target—operate. So, the more knowledge students accumulate, the smarter they become. We'll begin by exploring how knowledge brings more knowledge and then turn to how knowledge improves the quality and speed of thinking.
Il est vrai que la connaissance donne aux étudiants quelque chose à quoi penser, mais la lecture des compte-rendu de recherche des sciences cognitives montre que la connaissance fait bien plus que seulement aider les étudiants à perfectionner leurs habiletés cognitives. En réalité elle rend l’apprentissage plus facile. La connaissance n’est pas seulement cumulative, elle grandit de manière exponentielle. Les personnes qui possèdent une base riche en connaissances factuelles ont plus de facilité à apprendre davantage – les riches deviennent encore plus riches. Ajoutez à cela que les connaissances factuelles améliorent les processus cognitifs tels que la résolution de problème et le raisonnement. Plus cette base de connaissances est riche, plus les processus cognitifs – ceux précisément que l’enseignant prend pour cible de son enseignement – s’effectuent aisément et efficacement. Donc plus les étudiants accumulent de connaissances, plus ils deviennent intelligents. Nous commencerons par explorer comment les connaissances apportent plus de connaissances puis nous verrons comment les connaissances améliorent la qualité et la vitesse de pensée.

I. How Knowledge Brings More Knowledge
The more you know, the easier it will be for you to learn new things. Learning new things is actually a seamless process, but in order to study it and understand it better, cognitive scientists have approached it as a three-stage process. And they've found that knowledge helps at every stage: as you first take in new information (either via listening or reading), as you think about this information, and as the material is stored in memory. We'll consider each of these stages in turn.

I. Comment les connaissances apportent plus de connaissances
Plus on en connaît, plus il est facile d’apprendre de nouvelles choses. Apprendre de nouvelles choses est en réalité un processus indistinct et ininterrompu, mais dans le but de l’étudier et de mieux le comprendre, les scientifiques cognitivistes l’ont approché comme un processus en trois étapes. Et ils ont trouvé que la connaissance aide à chaque étape : quand on recueille une nouvelle information (soit lors d’une écoute soit lors d’une lecture), quand on émet des pensées à propos de cette information et lorsque le matériel est emmagasiné en mémoire. Nous considérerons dans l’ordre chacune de ces étapes.

How Knowledge Helps You Take in New Information

The first stage in which factual knowledge gives you a cognitive edge is when you are taking in new information, whether by listening or reading. There is much more to comprehending oral or written language than knowing vocabulary and syntax. Comprehension demands background knowledge because language is full of semantic breaks in which knowledge is assumed and, therefore, comprehension depends on making correct inferences. In a casual conversation, the listener can gather missing background knowledge and check on his inferences by asking questions (e.g., Did you mean Bob Smith or Bob Jones? What do you mean when you describe him as an entrepreneur?)—but this is not the case when watching a movie or reading a book. (And sometimes it isn't the case in class when a student is too embarrassed to ask a question.)

I. Comment les connaissances nous aident à recueillir de nouvelles informations


Les connaissances factuelles nous donnent un avantage cognitif tout d’abord quand nous sommes confrontés à une nouvelle information, que ce soit en écoutant ou en lisant. C'est la première étape. Comprendre le langage oral et écrit ne se résume pas simplement à connaître le vocabulaire et la syntaxe. La compréhension demande des connaissances d’arrière-plan parce que le langage est rempli de raccourcis sémantiques dans lesquels une connaissance est présupposée et, par conséquent, la compréhension dépend de la réalisation d’inférences correctes. Dans une conversation informelle, celui qui écoute peut rassembler les connaissances d’arrière-plan manquantes et vérifier si les inférences qu’il fait sont correctes en posant des questions (par exemple, Tu parles de Bob Smith ou de Bob Jones ? Que veux-tu dire quand tu le décris comme un responsable d’affaires ?) – mais ce n’est pas le cas quand on regarde un film ou lit un livre (Et quelquefois, ce n’est pas le cas en classe quand l’étudiant est trop gêné pour poser une question).

To provide some concrete examples and simplify the discussion, let's focus on reading—but keep in mind that the same points apply to listening. Suppose you read this brief text: "John's face fell as he looked down at his protruding belly. The invitation specified ‘black tie' and he hadn't worn his tux since his own wedding, 20 years earlier." You will likely infer that John is concerned that his tuxedo won't fit, although the text says nothing directly about this potential problem. The writer could add the specifics ("John had gained weight since he last wore his tuxedo, and worried that it would not fit"), but they are not necessary and the added words would make the text dull. Your mind is well able to fill in the gaps because you know that people are often heavier 20 years after their wedding, and that gaining weight usually means that old clothing won't fit. This background knowledge about the world is readily available and so the writer need not specify it.

Pour fournir des exemples concrets et simplifier la discussion, concentrons-nous sur la lecture – mais gardons à l’esprit que les mêmes arguments s’appliquent également à l’écoute. Supposons que nous lisions ce texte court : « John prit un air triste lorsqu’il se baissa pour regarder son ventre protubérant. L’invitation spécifiait « smoking » et il n’avait pas porté le sien depuis son propre mariage, vingt ans plus tôt. » Nous en inférerons vraisemblablement que John est anxieux en pensant que son smoking ne lui ira pas, bien que le texte ne dise rien sur ce problème potentiel. L’écrivain pourrait ajouter des précisions (« John a pris du poids depuis la dernière fois qu’il a porté son smoking et il est préoccupé parce qu’il pourrait ne plus rentrer dedans »), mais ces précisions ne sont pas nécessaires et le fait d’ajouter ces mots rendraient le texte rébarbatif. Notre esprit est tout à fait capable de remplir ces blancs parce que nous savons que les gens ont souvent pris du poids vingt ans après leur mariage et que ce poids en augmentation veut dire habituellement qu’on ne pourra plus mettre les vieux habits. Cette connaissance d’arrière-plan sur le monde est facilement disponible et l’écrivain n’a pas besoin de la mentionner explicitement.

Thus, an obvious way in which knowledge aids the acquisition of more knowledge lies in the greater power it affords in making correct inferences. If the writer assumes that you have some background knowledge that you lack, you'll be confused. For example, if you read, "He was a real Benedict Arnold about it" and you don't know who Benedict Arnold was, you're lost. This implication of background knowledge is straightforward and easy to grasp. It is no surprise, then, that the ability to read a text and make sense of it is highly correlated with background knowledge (Kosmoski, Gay, and Vockell, 1990). If you know more, you're a better reader.
C’est pourquoi l’aide qu’apporte la connaissance dans l’acquisition de nouvelles connaissances réside tout d’abord de manière évidente dans le plus grand pouvoir qu’elle donne pour réaliser des inférences correctes. Si l’écrivain présuppose que nous disposons de certaines connaissances d’arrière-plan dont en fait nous sommes dépourvus, nous serons désorientés. Par exemple, si nous lisons « Il a été un véritable Benedict Arnold dans cette histoire » et que nous ne savons pas qui était Benedict Arnold, nous sommes perdus. Cette conséquence positive de la connaissance d’arrière-plan est directe et facile à saisir. Il n’est pas surprenant, alors, que la capacité à lire un texte et à le comprendre soit en très forte corrélation avec la connaissance d’arrière-plan, (Komoski, Gay , and Vockell, 1990).

Most of the time you are unaware of making inferences when you read. For example, when you read the text above it's unlikely you thought to yourself, "Hmmm ... let me see now ... why am I being told about the last time he wore his tuxedo? Why would thinking about that make his face fall?" Those conscious inferences are unnecessary because the cognitive processes that interpret what you read automatically access not just the literal words that you read, but also ideas associated with those words. Thus, when you read "tux," the cognitive processes that are making sense of the text can access not just "a formal suit of clothing," but all of the related concepts in your memory: Tuxedos are expensive, they are worn infrequently, they are not comfortable, they can be rented, they are often worn at weddings, and so on. As the text illustrates, the cognitive processes that extract meaning also have access to concepts represented by the intersection of ideas; "tux" makes available "clothing," and "20 years after wedding" makes available "gaining weight." The intersection of "clothing" and "gaining weight" yields the idea "clothing won't fit" and we understand why John is not happy. All of these associations and inferences happen outside of awareness. Only the outcome of this cognitive process—that John is concerned his tux won't fit anymore—enters consciousness.
La plupart du temps nous n’avons pas conscience de faire des inférences quand nous lisons. Par exemple, quand nous lûmes le texte ci-dessus, nous n’avons certainement pensé en notre for intérieur « Hmmm… voyons voir maintenant, pourquoi me parle-t-on de la dernière fois où il a porté son smoking ? Pourquoi le fait de penser à cela le rendrait triste ? » Ces inférences conscientes ne sont pas nécessaires parce que le processus cognitif qui interprète ce que nous lisons accède automatiquement non seulement à la lettre de ce que nous lisons, mais aussi aux idées associées avec ces mots. C’est pourquoi, quand nous lisons « smoking », les processus cognitifs qui comprennent le texte peuvent accéder non seulement à « un ensemble d’habits pour les grandes occasions donnant un air solennel », mais aussi à tous les concepts en relation avec ces idées dans notre mémoire : les smokings sont chers, on ne les porte pas souvent, et ainsi de suite. Comme le texte le montre, les processus cognitifs qui extraient le sens ont aussi accès aux concepts représentés par l’intersection des idées ; « smoking » donné accès à « habit » et « vingt ans après le mariage » rend disponible « prise de poids ». L’intersection de « vêtement » et de « prise de poids » amène l’idée « les habits n’iront pas » et nous comprenons pourquoi John n’est pas heureux. Toutes ces associations et inférences se sont déroulées en dehors de la conscience. Seul le résultat du processus cognitif – que John est embêté parce que son smoking ne lui ira plus – arrive à la conscience.

Sometimes this subconscious inference-making process fails and the ideas in the text cannot be connected. When this happens, processing stops and a greater effort is made to find some connection among the words and ideas in the text. This greater effort requires conscious processing. For example, suppose that later in the same text you read, "John walked down the steps with care. Jeanine looked him up and down while she waited. Finally she said, ‘Well, I'm glad I've got some fish in my purse.'" Jeanine's comment might well stop the normal flow of reading. Why would she have fish? You would search for some relationship between carrying fish to a formal event and the other elements of the situation (formal wear, stairs, purses, what you've been told of Jeanine and John). In this search you might retrieve the popular notion that wearing a tuxedo can make one look a little like a penguin, which immediately leads to the association that penguins eat fish. Jeanine is likening John to a penguin and thus she is teasing him. Sense is made, and reading can continue. Here, then, is a second and more subtle benefit of general knowledge: People with more general knowledge have richer associations among the concepts in memory; and when associations are strong, they become available to the reading process automatically. That means the person with rich general knowledge rarely has to interrupt reading in order to consciously search for connections.


Quelquefois ce processus de réalisation d’inférences échoue et les idées dans le texte ne peuvent être connectées. Quand cela se produit, le traitement s’arrête et un effort plus grand est consenti pour trouver quelque connexion parmi les mots et les idées dans le texte. Cet effort plus grand requiert un traitement conscient. Par exemple, supposons que plus tard dans le même texte nous lisions « John descendit les marches avec prudence. Jeanine le regarda de haut en bas et de bas en haut pendant qu’elle attendait. Finalement, elle dit : « Eh bien, je suis contente d’avoir un peu de poisson dans mon sac à main. » Le commentaire de Jeanine pourrait bien stopper le flux normal de la lecture. Pourquoi aurait-elle du poisson ? Le lecteur chercherait alors quelque relation entre le fait d’apporter du poisson à un événement solennel et les autres éléments de la situation (habit solennel, escaliers, sac à main, ce qui a été dit au sujet de John et de Jeanine). Dans cette recherche, on pourrait se rappeler de la notion populaire selon laquelle porter un smoking peut faire un peu ressembler quelqu’un à un pingouin, ce qui mène immédiatement à l’association que les pingouins mangent du poisson. Jeanine est en train de comparer John à un pingouin et donc elle le taquine. Le sens a été trouvé et la lecture peut continuer. On a donc ici affaire à un deuxième bénéfice plus subtil offert par la possession de connaissances générales : les personnes qui ont plus de connaissances générales ont de plus riches associations entre les concepts dans leur mémoire ; et quand les associations sont fortes, elles deviennent disponibles dans le processus de lecture de manière automatique. Ce qui signifie qu’une personne disposant d’une connaissance générale riche a rarement à interrompre sa lecture pour procéder une recherche consciente de connexions. 


This phenomenon has been verified experimentally by having subjects read texts on topics with which they are or are not very familiar. For example, Johanna Kaakinen and her colleagues (2003) had subjects read a text about four common diseases (e.g., flu) for which they were likely already familiar with the symptoms, and a text about four uncommon diseases (e.g., typhus) for which they likely were not. For each text, there was additional information about the diseases that subjects likely did not know.

Ce phénomène a été vérifié expérimentalement en faisant lire à des sujets des textes portant sur des thèmes dont ils sont ou ne sont pas familiers. Par exemple, Johanna Kaakinen et ses collègues (2003) ont fait lire à des sujets un texte portant sur quatre maladies communes (par exemple la grippe) dont ils étaient susceptibles de connaître déjà les symptômes et un texte sur quatre maladies rares (par exemple le typhus) à propos desquels il était probable qu’ils ne sachent rien. Pour chaque texte, il y avait des informations additionnelles sur les maladies que les sujets ne connaîtraient sûrement pas.

The researchers used a sophisticated technology to unobtrusively measure where subjects fixated their eyes while they read each text. Researchers thus had a precise measure of reading speed, and they could tell when subjects returned to an earlier portion of the text to reread something. The researchers found that when reading unfamiliar texts, subjects more often reread parts of sentences and they more often looked back to previous sentences. Their reading speed was also slower overall compared to when they read familiar texts. These measures indicate that processing is slower when reading about something unfamiliar to you.

Les chercheurs ont utilisé une technologie sophistiquée pour mesurer discrètement où les sujets fixaient leurs yeux pendant qu’ils lisaient chaque texte. Les chercheurs acquirent ainsi une mesure précise de la vitesse de lecture, et ils purent dire à quel moment les sujets revenaient à une portion antérieure du texte pour relire quelque chose. Les chercheurs trouvèrent que lorsqu’ils lisaient des textes non familiers, les sujets relisaient plus souvent des parties de phrases et ils faisaient souvent des retours en arrière en regardant des phrases déjà lues. Leur vitesse de lecture était aussi plus lente en général que lorsqu’ils lisaient des textes familiers. Ces mesures indiquent que le traitement est plus lent lorsqu’on lit des choses qui ne nous sont pas familières.

Thus, background knowledge makes one a better reader in two ways. First, it means that there is a greater probability that you will have the knowledge to successfully make the necessary inferences to understand a text (e.g., you will know that people are often heavier 20 years after their wedding and, thus, John is worried that his tux won't fit). Second, rich background knowledge means that you will rarely need to reread a text in an effort to consciously search for connections in the text (e.g., you will quickly realize that with her fish remark, Jeanine is likening John to a penguin).

Ainsi, les connaissances de base font devenir un meilleur lecteur de deux manières. Premièrement, leur possession signifie qu’il y a une plus grande probabilité que nous disposions des connaissances  réussir à faire les inférences nécessaires pour comprendre un texte (par exemple, nous saurons que les gens sont souvent plus lourds 20 ans après leur mariage et donc que John est soucieux  à l’idée que son smoking ne lui ira pas). Deuxièmement, de riches connaissances de base indiquent que nous aurons rarement besoin de relire un texte pour nous efforcer de chercher consciemment des connexions dans le texte (par exemple, nous réaliserons rapidement que, avec sa remarque sur les poissons, Jeanine compare John à un pingouin).


How Knowledge Helps You Think about New Information

Comprehending a text so as to take in new information is just the first stage of learning that new information; the second is to think about it. This happens in what cognitive scientists call working memory, the staging ground for thought. Working memory is often referred to metaphorically as a space to emphasize its limited nature; one can maintain only a limited amount of information in working memory. For example, read through this list one time, then look away and see how many of the letters you can recall.
CN
NFB
ICB
SCI
ANC
AA
There were 16 letters on the list, and most people can recall around seven—there is not sufficient space in working memory to maintain more than that. Now try the same task again with this list.
CNN
FBI
CBS
CIA

NCAA



Comment les connaissances nous aident à penser la nouvelle information
Comprendre un texte de manière à recueillir de nouvelles informations est seulement la première étape d’apprentissage de cette nouvelle information ; la seconde est de la penser et de la réfléchir. Cela se passe dans ce que les scientifiques cognitivistes appellent mémoire de travail, la plaque tournante de la pensée. On désigne souvent la mémoire de travail comme un espace pour insister sur sa nature limitée ; on ne peut maintenir qu’une quantité limitée d’informations dans la mémoire de travail. Par exemple, parcourez cette liste une fois, puis détournez le regard et voyez combien de lettres vous pouvez vous rappeler.
CN
NFB
ICB
SCI
ANC
AA
Il y avait 16 lettres dans cette liste et la plupart des gens ne peuvent se rappeler que de 7 – il n’y a pas suffisamment d’espace dans la mémoire de travail pour en garder plus que cela. Maintenant recommencez avec cette liste.
CNN
FBI
CBS
CIA
NCAA

Much easier, right? If you compare the two lists, you will see that they actually contain the same letters. The second list has been reorganized in a way that encourages you to treat C, N, and N as a single unit, rather than as three separate letters. Putting items together this way is called chunking. It greatly expands how much fits in your working memory—and, therefore, how much you can think about. The typical persons' working memory can hold about seven letters or almost the same number of multi-letter chunks or pieces of information. Note, however, that chunking depends on background knowledge. If you weren't familiar with the abbreviation for the Federal Bureau of Investigation, you couldn't treat FBI as a single chunk.
Beaucoup plus facile, n’est-ce pas ? Si on compare les deux listes, on verra qu’elles contiennent en fait les mêmes lettres. La seconde liste a été réorganisée d’une manière telle qu’elle traite C, N et N comme une même unité, plutôt que comme trois lettres séparées. Mettre les éléments ensemble de cette façon est appelé « agrégation » (chunking). Cela élargit grandement la quantité d’informations qui peuvent rentrer dans la mémoire de travail – et, par conséquent, la quantité d’informations sur laquelle on peut exercer sa pensée. La mémoire de travail de personnes normales peut contenir environ sept lettres ou presque le même nombre d’agrégats multi-lettres ou d’informations. Il faut noter, cependant, que l’agrégation dépend des connaissances de base. Si on ne connaissait pas l’abréviation pour le Federal Bureau of Investigation, on ne pouvait traiter FBI comme un agrégat simple. 


The ability to chunk and its reliance on background knowledge has been tested in a number of studies. These studies show that this ability makes people better able to briefly remember a list of items, just as you could remember more letters in the second example. This benefit has been observed in many domains, including chess (Chase and Simon, 1973), bridge (Engle and Bukstel, 1978), computer programming (McKeithen, Reitman, Rueter, and Hirtle, 1981), dance steps (Allard and Starkes, 1991), circuit design (Egan and Schwartz, 1979), maps (Gilhooly, Wood, Kinnear, and Green, 1988), and music (Sloboda, 1976).

La capacité à agréger et le fait que cette capacité dépende des connaissances de base a été testée dans un certain nombre d’études. Ces études montrent que cette capacité améliore la capacité à mémoriser une liste d’éléments, de la même façon que l’on pouvait se rappeler plus de lettres dans le second exemple. Ce bénéfice a été observée dans de nombreux domaines, y compris les échecs (Chase and Simon, 1973), le bridge (Engle and Bukstel, 1978), la programmation informatique (McKeithen, Reitman, Rueter, and Hirtle, 1981), les pas de danse (Allard and Starkes, 1991), la conception de circuits électroniques (Egan and Schwartz, 1979), la capacité à lire des cartes (Gilhooly, Wood, Kinnear, and Green, 1988) et la musique (Sloboda, 1976). 


Of course, we seldom want to briefly remember a list. The important aspect of chunking is that it leaves more free space in working memory, allowing that space to be devoted to other tasks, such as recognizing patterns in the material. For example, in one study (Recht and Leslie, 1988), the researchers tested junior high school students who were either good or poor readers (as measured by a standard reading test) and who were also knowledgeable or not about the game of baseball (as measured by a test created for the study by three semi-professional baseball players). The children read a passage written at an early 5th-grade reading level that described a half inning of a baseball game. The passage was divided into five parts, and after each part the student was asked to use a replica of a baseball field and players to reenact and describe what they read. The researchers found that baseball knowledge had a big impact on performance: Poor readers with a high knowledge of baseball displayed better comprehension than good readers with a low knowledge of baseball.



















































29 mars 2016

Anne Cunningham and Keith Stanovich, Reading Can Make You Smarter ! (2003)

crédit photo

READING CAN MAKE YOU SMARTER!
Anne Cunningham and Keith Stanovich

source : Principal 83 no 2 N/D 2003.


The more children read, the greater their vocabulary and the better their cognitive skills.

In brief
Two researchers examine the “positive feedback loop” that avid readers experience and present research findings to support their belief that reading itselfno matter the reading level—builds vocabulary and increases the ability to read fluently.

We've known for a while how children learn to read and the foundational milestones they must achieve to become fluent and accomplished readers. But now we are seeing that the amount of print children are exposed to has profound cognitive consequences, and that the act of reading itself serves to increase the achievement differences among children.

Research has shown that early suc­cess at reading is clearly one of the keys that unlocks a lifetime of reading habits. We now understand that children who crack the spelling-to-sound code early appear to enter something like a positive feedback loop, a reciprocal effect in which reading increases their ability to read.

This may explain the Matthew Effect seen so often in literacy development, a rich-get-richer and poor-get-poorer phenomenon that has early and efficient acquisition of reading skill yielding faster rates of growth not only in reading achievement but other cognitive skills as well (Stanovich 1986; Walberg & Tsai 1983). We believe that independent reading may help explain the widening achievement disparities between the educational haves and have-nots.

Building Vocabulary

Support for our belief can be seen most easily in the field of vocabulary development. Research has shown that after decoding skills, a child's vocabulary is one of the most important factors in fluent and easy reading. Children with limited vocabularies stumble over unfamiliar words in trying to read a sentence and can't keep the thread of the idea—a sure formula for difficulty and dislike of reading.

While it is generally agreed that most children's vocabulary growth occurs indirectly through language exposure rather than direct instruc­tion, we now realize it is reading volume, rather than oral language, that is the primary source of their differences in vocabularies. This has been shown through Hayes and Ahrens' (1988) research analyzing the frequency and complexity of words a person might encounter in different contexts.

Hayes and Ahrens analyzed three different categories of language: written language sampled from texts ranging in difficulty from scientific articles to preschool readers; words spoken on different types of television shows; and adult speech (Table 1).

They then analyzed the words according to a standard frequency count that tells how often an average person would hear or read a particular word (Carroll et al. 1971). So, for example, "the" is ranked number 1 in terms of frequent use (out of roughly 87,000 words) while a more specialized word like "amplifier" is ranked 16,000th.

For vocabulary growth to occur (especially after the middle grades) children must be exposed to words that are relatively rare, and it is print that provides many such word-learning opportunities. For example, Hayes and Ahrens found children's books to have 50 percent more rare words in them than adult prime-time television or the conversation of college graduates.

These relative differences have direct implications for children's vocabulary development. For if most vocabulary is acquired outside of formal teaching, then opportunities to acquire new words occur vastly more often while reading rather than listening.

So if we want children to improve their vocabulary and reading fluency, we must get them to log many hours on printed pages. But there is a huge difference in reading volume between avid and reluctant readers. Data from a study of out-of-school reading time by fifth graders show that a child at the 50th percentile read about five minutes a day, or a half-hour per week—more than six times as much as a child at the 20th percentile (Anderson et al. 1988). Table 2 illustrates the enormous differences in word exposure generated by children's different proclivities toward reading. For example, just two days' out-of-school reading for a child at the 90th percentile amounts to an entire year's reading for a child at the 10th percentile!

Reading Works for Everyone

It is one thing to speculate how differences in reading volume may have specific cognitive consequences. It is another to demonstrate that these effects are occurring. All of our studies have demonstrated that reading a lot is effective regardless of the level of a child's cognitive and reading ability. We do not have to wait for "prerequisite" abilities to be in place before encouraging students' free reading. Even the student with limited reading and comprehension skills will build vocabulary and thinking skills through reading.

Moreover, in our research we have observed the large and unique contribution independent, out-of-school reading makes toward reading ability, aspects of verbal intel­ligence, and general knowledge about the world (Cunningham & Stanovich 1990, 1991, 1997; Stanovich 1993, 2000; Stanovich & Cunningham 1992, 1993; Stanovich & West 1989). We have found that there are specific effects of reading volume that do not simply result from the higher cogni­tive abilities and skills of the more avid reader.

This is an encouraging message for principals to give teachers of low-achieving students. Since reading has such profound consequences, it is imperative that we do not deny reading experiences to precisely those students whose verbal abilities most need bolstering. If we want them to get a successful early start for reading ability, it is critical that we support their extensive engagement with print.

Table 2. Variation in Independent Reading by Fifth Graders

Minutes of Reading Per Day
Readers (%) Books All Reading
        98          65.0        90.7
        90          21.1        40.4
        80          14.2        31.1
        70            9.6        21.7
        60            6.5        18.1
        50            4.6        12.9
        40            3.2        8.6
        30            1.3        5.8
        20            0.7        3.1
        10            0.1        1.6
          2            0.0        0.2
Adapted from Anderson, Wi1son, and Fielding (1988).

The Principal’s Role
As instructional leaders, princi­pals should promote extended independent reading opportunities at home and after school by ensuring the following:

During the school day:
·        Classrooms are full of books and writing materials.
·        There are special book centers with places to read comfortably.
·        A wide variety of genres (both informational text as well as literature) are available.
·        Children's compositions and illustrations about favorite books are prominently displayed in the classroom.
·        Frequent opportunity for children to read in teacher-selected books and on their own in self-selected books.
·        Teachers work together to support and teach reading across all subject areas.
·        Teacher-led discussions of books and print are frequently observed.

Outside the school day:
·        Establish a schoolwide reading program at home and support it by replenishing books and print material.
·        Demonstrate to parents the importance of reading out Ioud to children in text that is above their reading level.
·        Provide after-school reading programs to support extended experiences with print.
·        Develop a Iiteracy attitude checklist to keep in touch with motivational levels and provide specific support.


                                                                                                  
References
Anderson, R. C.; Wilson, P. T.; and Fielding, L. G. "Growth in Reading and How Children Spend Their Time Outside of School." Reading Research Quarterly' 23 (1988): 285-303.
Carroll, J. B.; Davies, P.; and Richman, B. Word Frequency Book. Boston: Houghton Miflin. 1971.
Cunningham, A. E. and Stanovich, K. E. "Assessing Print Exposure and Orthographic Processing Skill in Children: A Quick Measure of Reading Experience." Journal of Educational Psychology 82 (1990): 733-740.
Cunningham, A. E. and Stanovich, K. E. "Tracking the Unique Effects of Print Exposure in Children: Associations with Vocabulary, General Knowledge, and Spelling." Journal of Educational Psychology 83 (1991): 264-274.
Cunningham, A. E. and Stanovich. K. E. "Early Reading Acquisition and its Relation to Reading Experience and Ability 10 Years Later." Developmental Psychology 33,6 (1997); 934-945.
Hayes, D. P. "Speaking and Writing: Distinct Patterns of Word Choice." Journal of Memory and Language 27 (1988): 572-585.
Hayes, D. P. and Ahrens, M. "Vocabulary Simplification for Children: A Special Case of `Motherese'?" Journal of Child Language 15 (1988): 395-410.
Stanovich, K. E. Progress in Understanding Reading, New York: Guilford Press, 2000.
Stanovich, K. E. "Does Reading Make You Smarter? Literacy and the Development of Verbal Intelligence." In H. Reese (Ed.), Advances in Child Development and Behavior: 133-180. San Diego: Academic Press, 1993.
Stanovich, K. E. "Matthew Effects in Reading: Some Consequences of Individual Differences in the Acquisition of Literacy." Reading Research Quarterly 21 (1986): 360-407.
Stanovich, K. E. and Cunningham, A. E. "Studying the Consequences of Literacy Within a Literate Society: The Cognitive Correlates of Print Exposure." Memory & Cognition 20 (1992): 51-68.
Stanovich, K. E. and Cunningham, A. E. "Where Does Knowledge Corne From? Specific Associations Between Print Exposure and Information Acquisition." journal of Educational PsycholVgy 85 (1993): 211-229.
Stanovich, K. E. and West, R. F. "Ekposure to Print and Orthographic Processing." Reading Research Quarterly 24 (1989): 402-433.
Walberg, H.J. and Tsai, S. "Matthew Effects in Education." American Educational Research Journal 20 (1983): 359-373.

Anne Cunningham is professor of cogni­tion and development at the University of California, Berkeley. Her e-mail address is acunning@uclink.berkeley.edu.

Keith Stanovich is professor of human development and applied psychology at the University of Toronto. His e-mail address is kstanovich@oise.utoronto.ca.

WEB RESOURCES
The International Reading Association has a number of resources on reading and literacy, including an archival listing of published articles on vocabulary.
The Virginia Tech Division of Student Affairs provides brief guidelines for building vocabulary
SuperKids posts game-like strategies to help children build vocabularies.



21 mars 2016

Does Sorting Students Improve Scores? An Analysis of Class Composition (Courtney A. Collins, Li Gan:2013) : sauvegarde

http://www.nber.org/papers/w18848


Does Sorting Students Improve Scores? An Analysis of Class Composition

Courtney A. CollinsLi Gan

NBER Working Paper No. 18848
Issued in February 2013
NBER Program(s):   ED 
This paper examines schools' decisions to sort students into different classes and how those sorting processes impact student achievement. There are two potential effects that result from schools creating homogeneous classes--a "tracking effect," which allows teachers to direct their focus to a more narrow range of students, and a peer effect, which causes a particular student's achievement to be influenced by the quality of peers in his classroom. In schools with homogeneous sorting, both the tracking effect and the peer effect should benefit high performing students. However, the effects would work in opposite directions for a low achieving student; he would benefit from the tracking effect, but the peer effect should decrease his score. This paper seeks to determine the net effect for low performing students in order to understand the full implications of sorting on all students.
We use a unique student-level data set from Dallas Independent School District that links students to their actual classes and reveals the entire distribution of students within a classroom. We find significant variation in sorting practices across schools and use this variation to identify the effect of sorting on student achievement. Implementing a unique instrumental variables approach, we find that sorting homogeneously by previous performance significantly improves students' math and reading scores. This effect is present for students across the score distribution, suggesting that the net effect of sorting is beneficial for both high and low performing students. We also explore the effects of sorting along other dimensions, such as gifted and talented status, special education status, and limited English proficiency.


email paper
Follow on Bloglovin
 

Archives (2011 à 2014)

Vous aimerez peut-être :

Related Posts Plugin for WordPress, Blogger...